Chapter 3 Atmosphere, Lithosphere, Hydrosphere, Biosphere

Learning Objectives

After completion this chapter, you will learn how to:

  • Explain the Atmosphere, Hydrosphere, Biosphere and Lithosphere.
  • Determine the interaction between Earth system.

 

“File:Lobo marino (Zalophus californianus wollebaeki), Punta Pitt, isla de San Cristóbal, islas Galápagos, Ecuador, 2015-07-24, DD 11.JPG” by Wikimedia Commons, the free media repository is licensed under CC BY-SA 4.0

 

The Atmosphere

An atmosphere (from Ancient Greek ἀτμός (atmós) ‘vapour, steam’, and σφαῖρα (sphaîra) ‘sphere’) is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules.

The atmosphere of Earth is composed of nitrogen (78 %), oxygen (21 %), argon (0.9 %), carbon dioxide (0.04 %) and trace gases. Most organisms use oxygen for respiration; lightning and bacteria perform nitrogen fixation to produce ammonia that is used to make nucleotides and amino acids; plants, algae, and cyanobacteria use carbon dioxide for photosynthesis. The layered composition of the atmosphere minimises the harmful effects of sunlight, ultraviolet radiation, solar wind, and cosmic rays to protect organisms from genetic damage. The current composition of the atmosphere of the Earth is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms.

Structure of Earth

Earth

The atmosphere of Earth is composed of layers with different properties, such as specific gaseous composition, temperature, and pressure.

The troposphere is the lowest layer of the atmosphere. This extends from the planetary surface to the bottom of the stratosphere. The troposphere contains 75–80 % of the mass of the atmosphere, and is the atmospheric layer wherein the weather occurs; the height of the troposphere varies between 17 km at the equator and 7.0 km at the poles.

The stratosphere extends from the top of the troposphere to the bottom of the mesosphere, and contains the ozone layer, at an altitude between 15 km and 35 km. It is the atmospheric layer that absorbs most of the ultraviolet radiation that Earth receives from the Sun.

The mesosphere ranges from 50 km to 85 km, and is the layer wherein most meteors are incinerated before reaching the surface.

The thermosphere extends from an altitude of 85 km to the base of the exosphere at 690 km and contains the ionosphere, where solar radiation ionizes the atmosphere. The density of the ionosphere is greater at short distances from the planetary surface in the daytime and decreases as the ionosphere rises at night-time, thereby allowing a greater range of radio frequencies to travel greater distances.

The exosphere begins at 690 to 1,000 km from the surface, and extends to roughly 10,000 km, where it interacts with the magnetosphere of Earth.

 

 

Pressure

Atmospheric pressure is the force (per unit-area) perpendicular to a unit-area of planetary surface, as determined by the weight of the vertical column of atmospheric gases. In said atmospheric model, the atmospheric pressure, the weight of the mass of the gas, decreases at high altitude because of the diminishing mass of the gas above the point of barometric measurement. The units of air pressure are based upon the standard atmosphere (atm), which is 101,325 Pa (equivalent to 760 Torr or 14.696 psi). The height at which the atmospheric pressure declines by a factor of e (an irrational number equal to 2.71828) is called the scale height (H). For an atmosphere of uniform temperature, the scale height is proportional to the atmospheric temperature, and is inversely proportional to the product of the mean molecular mass of dry air, and the local acceleration of gravity at the point of barometric measurement.

 

 

The Hydrosphere

A hydrosphere is the total amount of water on a planet. The hydrosphere includes water that is on the surface of the planet, underground, and in the air. A planet’s hydrosphere can be liquid, vapor, or ice. On Earth, liquid water exists on the surface in the form of oceans, lakes, and rivers. It also exists below ground—as groundwater, in wells and aquifers. Water vapor is most visible as clouds and fog. The frozen part of Earth’s hydrosphere is made of ice: glaciers, ice caps and icebergs. The frozen part of the hydrosphere has its own name, the cryosphere. Water moves through the hydrosphere in a cycle. Water collects in clouds, then falls to Earth in the form of rain or snow. This water collects in rivers, lakes and oceans. Then it evaporates into the atmosphere to start the cycle all over again. This is called the water cycle.

 

The Biosphere

The biosphere has existed for about 3.5 billion years. The biosphere’s earliest life-forms, called prokaryotes, survived without oxygen. Ancient prokaryotes included single-celled organisms such as bacteria and archaea. Some prokaryotes developed a unique chemical process. They were able to use sunlight to make simple sugars and oxygen out of water and carbon dioxide, a process called photosynthesis. These photosynthetic organisms were so plentiful that they changed the biosphere. Over a long period of time, the atmosphere developed a mix of oxygen and other gases that could sustain new forms of life. The addition of oxygen to the biosphere allowed more complex life-forms to evolve. Millions of different plants and other photosynthetic species developed. Animals, which consume plants (and other animals) evolved. Bacteria and other organisms evolved to decompose, or break down, dead animals and plants. The biosphere benefits from this food web. The remains of dead plants and animals release nutrients into the soil and ocean. These nutrients are reabsorbed by growing plants. This exchange of food and energy makes the biosphere a self-supporting and self-regulating system. The biosphere is sometimes thought of as one large ecosystem—a complex community of living and nonliving things functioning as a single unit. More often, however, the biosphere is described as having many ecosystems.

 

The Lithosphere

The lithosphere is the solid, outer part of Earth. The lithosphere includes the brittle upper portion of the mantle and the crust, the outermost layers of Earth’s structure. It is bounded by the atmosphere above and the asthenosphere (another part of the upper mantle) below. Although the rocks of the lithosphere are still considered elastic, they are not viscous. The asthenosphere is viscous, and the lithosphere-asthenosphere boundary (LAB) is the point where geologists and rheologists—scientists who study the flow of matter—mark the difference in ductility between the two layers of the upper mantle. Ductility measures a solid material’s ability to deform or stretch under stress. The lithosphere is far less ductile than the asthenosphere. There are two types of lithosphere: oceanic lithosphere and continental lithosphere. Oceanic lithosphere is associated with oceanic crust, and is slightly denser than continental lithosphere.

Plate Tectonics

The most well-known feature associated with Earth’s lithosphere is tectonic activity. Tectonic activity describes the interaction of the huge slabs of lithosphere called tectonic plates. The lithosphere is divided into tectonic plates including the North American, Caribbean, South American, Scotia, Antarctic, Eurasian, Arabian, African, Indian, Philippine, Australian, Pacific, Juan de Fuca, Cocos, and Nazca. Most tectonic activity takes place at the boundaries of these plates, where they may collide, tear apart, or slide against each other. The movement of tectonic plates is made possible by thermal energy (heat) from the mantle part of the lithosphere. Thermal energy makes the rocks of the lithosphere more elastic. Tectonic activity is responsible for some of Earth’s most dramatic geologic events: earthquakes, volcanoes, orogeny (mountain-building), and deep ocean trenches can all be formed by tectonic activity in the lithosphere. Tectonic activity can shape the lithosphere itself: Both oceanic and continental lithospheres are thinnest at rift valleys and ocean ridges, where tectonic plates are shifting apart from one another.

 

 

License

Icon for the Creative Commons Attribution 4.0 International License

Physical Geography Copyright © by ang kean hua is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book